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Optimizing Age of Information in Wireless Uplink
Networks With Partial Observations
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Abstract— This paper considers a wireless uplink network
consisting of multiple end devices and an access point (AP).
Each device monitors a physical process with randomly generated
status updates and sends these update packets to the AP in
the uplink. The AP aims to schedule the transmissions of these
devices to optimize the network-wide information freshness,
quantified by the age of information (Aol) metric. Due to the
stochastic arrival of the status updates at end devices, the
AP only has partial observations of system times of the latest
status update packets at end devices when making scheduling
decisions. Such a decision-making problem can be naturally
formulated as a partially observable Markov decision process
(POMDP). We reformulate the POMDP into an equivalent
belief Markov decision process (belief-MDP), by defining fully
observable belief states of the POMDP as the states of the
belief-MDP. The belief-MDP in its original form is difficult
to solve as the dimension of its states can go to infinity
and its belief space is uncountable. Fortunately, by carefully
leveraging the properties of the status update arrival processes
(i.e., Bernoulli processes), we manage to simplify the belief-
MDP substantially, where every feasible state is characterized
by a two-dimensional vector. Based on the simplified belief-MDP,
we devise a low-complexity scheduling policy, termed Partially
Observing Max-Weight (POMW) policy, for the formulated
Aol-oriented scheduling problem. We derive upper bounds for
the time-average Aol performance of the proposed POMW policy.
We analyze the performance guarantee for the POMW policy
by comparing its performance with a universal lower bound
available in the literature. Numerical results validate our analyses
and demonstrate that the performance gap between the POMW
policy and its fully observable counterpart is proportional to the
inverse of the lowest arrival rate of all end devices.

Index Terms— Age of information, multiuser scheduling, par-
tially observable Markov decision process, belief Markov decision
process.
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I. INTRODUCTION

HE rapid development of wireless communication

technologies in the past decades has stimulated their
ubiquitous applications in time-critical systems, such as vehic-
ular networks and industrial control networks [1], [2], [3].
In these applications, information (e.g., velocity and position
of a vehicle) needs to be delivered to targeted receivers as
timely as possible. The stale information could cause severe
consequences, e.g., damages to facilities or even losses of
human lives. Hence, the information timeliness or freshness
in these networks is of great importance. To quantify the
information freshness, the age of information (Aol) metric has
been proposed and extensively investigated in the literature
(e.g., see [4], [5], [6], [7], [8], [9], [10], [11], [12], [13],
[14], [15], [16], [17], [18], [19] and references therein). More
specifically, Aol is defined as the time elapsed since the
generation of the last successfully received message at destina-
tion [4]. Many efforts have been made on tackling transmission
scheduling problems to minimize the time-average Aol of
various network settings. Early work focused on the Aol-based
transmission scheduling problem in single-user networks, see
e.g., [20], [21], [22], [23], [24], [25], where the Aol perfor-
mance of the single user was optimized by determining when
to transmit a status update packet. Recent work has shifted
to design the Aol-based scheduling policies for multiuser net-
works, see e.g., [26], [27], [28], [29], [30], [31], [32]. In these
work, the network-wide time-average Aol was optimized by
determining how to schedule the transmission sequence of
multiple users.

In downlink multiuser networks, an access point (AP)
monitors multiple information sources and schedules trans-
missions of the generated status update packets from itself
to the corresponding end devices, respectively. In this con-
text, the AP can completely know the evolution of Aol
when acknowledgements are provided by end devices. The
Aol-based scheduling problems in downlink multiuser net-
works were thoroughly studied in [26], [28], and [33]. The
authors in [26] considered the “generate-at-will” model for the
generation of status updates. In this model, the AP generates
a status update for an information source whenever the trans-
mission to its targeted end device is scheduled. As such, the
AP only needs to consider the instantaneous Aol values of
all end devices when making scheduling decisions. Authors
in [26] first proved that in symmetric networks, a greedy
policy, which schedules the end device with the highest value
of instantaneous Aol, is optimal for minimizing the long-term
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average Aol. For more general networks, three low-complexity
scheduling policies were proposed and compared, including a
Max-Weight policy derived from the Lyapunov optimization
framework [34], a randomized policy, and a Whittled’s Index
policy. Reference [28] extended the Max-Weight policy to the
downlink networks with the “stochastic arrival” model, and
an upper bound for the network-wide time-average Aol was
derived. On the other hand, [27] developed a Whittle’s Index
policy for the same scenario as in [28]. In the “stochastic
arrival” model, the generation of status update packets for
each information source follows a stochastic process. In this
case, the system times of update packets at the AP and the
instantaneous Aol values of all end devices need to be jointly
considered when designing the scheduling policies for the AP.

In uplink multiuser networks, on the other hand, each
end device monitors the statuses of a separate information
source and sends status update packets to a common AP. The
AP aims to maintain a low network-wide Aol performance
by carefully scheduling the transmissions of status update
packets in the uplink. As the information destination, the
AP has a full track of the Aol values of all streams of
status updates. For the ‘“generate-at-will” model, each node
will generate a new status update packet once granted to
transmit. As such, the system times of status update packets
are fixed and can be perfectly known to the AP. In this case,
the Aol-oriented scheduling problems in uplink networks are
mathematically equivalent to those in downlink networks when
the scheduling constraints of the two types of networks are the
same. By contrast, when it comes to the “stochastic arrival”
model, the scheduling problems in uplink multiuser networks
are largely different from those in downlink networks. This
is because in uplink networks, the AP may need to make
scheduling decisions under partial observations of the system
times of randomly generated status update packets at end
device side. The complete observations of the system times
of all status update packets requires end devices to report
the arrivals of new status updates to the AP before each
scheduling decision-making. Such a reporting procedure could
lead to non-negligible network overhead, especially when
status update packets are short. Therefore, it is of practical
significance to address a question that arises here: Can we
still effectively optimize the Aol performance even if the status
update arrivals at the end nodes are not reported to the AP? In
that context, the AP only has an observation of the system time
of status update of a certain end device only when the device
is scheduled to transmit and the transmission is successful.
To the best knowledge, such an Aol-based scheduling problem
for uplink multiuser networks with partial observations has not
been thoroughly studied in open literature. We note that [27]
developed a Whittle’s Index policy for optimizing Aol in an
uplink multiuser network with the “stochastic arrival” model.
However, the system times of status update packets at all
nodes are assumed to be fully observed, making the scheduling
problem mathematically equivalent to that in [28].

As an attempt to fill the gap, in this paper we aim to
optimize the expected weighted sum Aol for an uplink mul-
tiuser network with stochastic arrivals of status updates at end
devices. The arrivals of status update packets at end devices
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are assumed to follow independent Bernoulli processes, which
is commonly used in the literature (see e.g., [26], [27], [28],
[34]). We consider that the end devices will not report the
random arrivals of the status updates to the AP for minimizing
the network overhead. As such, the designed scheduling policy
needs to make decisions with partial observations. The main
contributions of this paper are summarized as follows.

o We formulate our Aol-oriented scheduling problem as a
POMDP problem considering the incomplete knowledge
of status update arrivals of end devices at the AP. The
instantaneous system times of status update packets at
the end devices and the instantaneous Aol at the AP are
jointly defined as the states of the POMDP. We reformu-
late the POMDP to an equivalent belief Markov decision
process (belief-MDP), where the states of the belief-
MDP, termed belief states, are defined as the posterior
distributions of the states of the POMDP. We remark
that computing the optimal policy for the belief-MDP
(or the POMDP) is a PSPACE-complete problem [35],
which is not practically computable. Nevertheless, such a
belief-MDP reformulation benefits the policy design and
the theoretical analysis since the belief states characterize
sufficient statistics of the system.

e To solve the formulated belief-MDP, we propose
an effective simplification to characterize all feasible
infinite-dimensional belief states as two-dimensional vec-
tors. This is achieved by analyzing how Bernoulli arrival
processes of status updates at end devices affect the
evolution of the belief states. By doing so, we reduce the
continuous spaces of the belief states to discrete ones.
That is, we extract the feasible belief spaces from the
corresponding distribution spaces. The simplification of
belief updates in belief-MDP largely facilitate the design
of scheduling policies as well as the theoretical analysis
of the scheduling policies’ performance.

e We devise a low-complexity Partially Observable Max-
Weight (POMW) policy, inspired by the Lyapunov opti-
mization framework [34]. The POMW policy aims to
minimize a Lyapunov Drift function, defined as the
expectation of the sum of weighted instantaneous Aol,
in each time slot under condition of the current belief
states. Based on the simplified belief-MDP model and
a Randomized Scheduling policy proposed in [28],
we derive upper bounds for the expected weighted sum
Aol performance of the POMW policy. Further, we eval-
uate the performance guarantee for the POMW policy,
which is defined as the ratio between the Aol performance
of the POMW policy and that of a universal lower bound.
Simulation results validate our theoretical analysis. Simu-
lation results also show that the performance gap between
the POMW policy and its fully observable counterpart
is inversely proportional to the lowest arrival rate of all
end devices. Moreover, the proposed POMW policy is
superior to the baseline policies, which do not use the
statistical information of the system times of the status
update packets at end devices.

We notice a handful of efforts on designing Aol-oriented

scheduling policies that also considered networks with partial
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observations [21], [36], [37], [38]. Leng and Yener investi-
gated the Aol minimization in a time-slotted cognitive radio
energy harvesting network [21]. In [21], a secondary user
decides whether to send a status update in each time slot
with the partially observable occupation status of the spec-
trum. In this context, the Aol minimization problem was
formulated as a POMDP. The optimal policy with threshold
structure was sought by dynamic programming (DP). In [36],
the authors formulated the Aol optimization problem of a
status update system with a partially observable Gilbert-Elliott
Channel as a belief-MDP. The authors developed an efficient
structure-aware algorithm that is shown to be near-optimal.
Sert et al. [37] investigated an Aol-based minimization on
real-life TCP/IP connections with unknown delay and service
time distributions. They trained a Deep Q-network (DQN)
algorithm to perform actions on the network and obtained a
near-optimal Aol performance. Reference [38] focused on the
minimum-age scheduling for a time-slotted wireless uplink
network, where multiple sensors are used to monitor one
common physical process. The authors formulated a POMDP
and analyzed the performance of a greedy policy where an AP
schedules the sensor with the minimum system time in each
slot. In [21] and [36], the partially observable information only
have two states. Furthermore, all of the above work considered
the Aol-based scheduling problem with one stream of status
update. As such, the developed methods cannot be directly
applied to solve our scheduling problem with multiple streams
of status updates, where we need to deal with the intricate
interactions of the Aol evolutions of multiple end devices.
We notice that some studies have resorted to decentralized
strategies for optimizing Aol in the uplink multiuser networks.
By doing so, the local information at each end node can be
fully observed when a node makes transmission decisions.
Specifically, references [27] and [28] developed threshold-type
decentralized access policies for the Aol optimization in two
multiuser uplink systems. However, the decentralized policies
suffer from unavoidable transmission collisions in the uplink
since the transmissions of end nodes are not coordinated,
which will lead to performance degradation. By contrast,
this paper devises an effective centralized scheduling policy
that do not need end nodes to report their status update
arrivals.

We remark that part of the results presented in this work
has been published in the conference version [29]. In [29],
we formulated the considered scheduling design problem as a
POMDP and solved it by directly applying the classical DP
method. A low-complexity myopic policy was also proposed.
However, the complication of the problem in its default form
stopped us from conducting any theoretical analysis. In this
work, we reformulate the POMDP into a belief-MDP and
put forth an effective simplification of the belief-MDP. Such
simplification substantially facilitate the design of the POMW
policy as well as the theoretical analysis of its performance.

Notations: In this paper, ZT denotes the set of non-
negative integers, E[-] denotes the operator of expectation,
[-] denotes the representation of a vector containing the same
type of elements, (-) denotes a tuple containing different
types of elements, and ||-||; denotes the I;-norm of a vector.
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Fig. 1. The multiuser uplink system with stochastic arrival of status updates.

For two vectors, v = [v]/, and w = [w;]}, with the same
dimension L, v > w represents v; > wy, VI.

II. SYSTEM MODEL AND POMDP FORMULATION
A. System Model

As shown in Fig. 1, we consider a multiuser wireless uplink
network consisting of one access point (AP) and NN status-
updating end devices. Those end devices are also called nodes
hereafter, and indexed by ¢ € {1,...,N}. The considered
system is time-slotted, and the time slot is indexed by ¢ € Z™.
We consider a stochastic arrival model for the status update
packets at each node. Specifically, the status update arrival
at node ¢ in each slot follows an independent and identically
distributed (i.i.d.) Bernoulli process with an arrival rate ;.
Each node maintains a single buffer to store the latest status
update. That is, the current status update in the buffer will
be replaced once a new one arrives. Such a single-buffer
configuration, equivalent to the last-come-first-served (LCFS)
queuing model, has been shown to achieve the best informa-
tion freshness performance in stochastic arrival models [11],
[28]. All nodes share a common wireless channel, and their
transmissions of the status update packets in the uplink are
coordinated by the AP. Specifically, at the beginning of each
slot, the AP grants one node to transmit its latest status update
packet. We denote the scheduling indicator for node ¢ in slot ¢
by a; € {0, 1}, which is equal to 1 when node i is scheduled
to transmit in slot ¢, and a;; = 0 otherwise. Only one node
is scheduled to transmit in each slot, thus the transmission
collision among nodes is avoided. The transmission of each
status update packet takes one time slot. We further assume
that the transmission from node ¢ to the AP is error-prone with
a time-invariant successful rate! p;.

B. Information Freshness Metric

We adopt the Aol metric, originally proposed in [10],
to quantify the information freshness of all nodes at the AP.
To characterize the Aol mathematically, we first define the
local age d;;, which measures the system time of the last
arrived status update packet at node ¢ in slot ¢. If there is no
arrival of status update at node ¢ in the current slot, the local

'The considered packet loss model can implicitly incorporate practical con-
straints on bandwidth and peak power when we interpret the loss probability
as the outage probability at physical layer.
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age of the i-th node will increase by 1 at the beginning of
next slot. Otherwise, the packet stored at the node is replaced
by the newly arrived one, and its local age is reset to 1 at
the beginning of next slot. Therefore, the evolution of dy ; is
given by

1, if status update arrives at node ¢
dity1: = in slot ¢,
d:; +1, otherwise.
1

If node 7 is scheduled to transmit at the beginning of slot ¢
and its transmission is successful, the local age of node 7 will
be observed by the AP. As such, the destination Aol of node ¢,
denoted by D, ;, will be set to d;; + 1 at the beginning of
the next slot. Otherwise, if node 7 is not scheduled or the
transmission fails, D, ; will increase by 1 at the beginning of
the next slot. Mathematically, the evolution of Dy ; is given by

d:;+1, if the status update of node 7 is
Dysrs = successfully received by the AP
’ in slot ¢,
D, ;+1, otherwise.

2

In this paper, we assume that the local age and the destination
Aol of each node are initialized as 1, i.e., dy; = Do ; = 1, Vi.

We remark that the local age d;; and the destination Aol
D, ; evolve independently across nodes. We consider that the
AP does not grasp the specific evolutions of the local ages
at all nodes and it only has the statistical arrival information
(i.e., the values of )\;’s). Otherwise, the nodes need to notify
each of their status update arrivals to the AP, which will lead
to considerable network overhead, especially when the status
update packets are relatively short. In this context, the AP
only has an observation of the local age of a particular node
once the node is scheduled and the transmission succeeds.
Nevertheless, the AP can track the destination Aol values of
all nodes, no matter whether they are scheduled or not. Overall,
the AP has full information of the Aol D;;’s and partial
observations of the local age d:;’s when making scheduling
decisions.

C. POMDP Formulation

In this work, we adopt the long-term expected weighted
sum Aol (EWSAol) as the performance metric, which is
mathematically defined as

T N
Z Z%‘Dm

t=1 i=1

1
lim —F
o NT

W] ; 3)

where w; € (0,00) denotes the weight coefficient® of node 1,
the expectation is taken over all system dynamics, and
7w denotes a given multiuser scheduling policy. We aim to
devise a scheduling policy 7 for the AP to minimize the

2The weight coefficient of a node represents the priority of status updates
associated with the node.
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long-term EWSAoI while fulfilling the scheduling constraint.
Mathematically, we have the following optimization problem

1 T N
min i G7E 12D D ”]’
N
st Y ani <1, W 4)
1=1

where the scheduling constraint is that the AP can schedule
at most one node in each slot. In our design, the AP makes
the scheduling decision at the beginning of each time slot.
The information available at the AP for decision making
includes the values of A;’s, p;’s, w;’s, the full observations
of the destination Aol D, ;’s, and the partial observations of
the local age d;;’s. Such a decision-making problem with
partial observations is naturally formulated as a POMDP. The
components of the POMDP of the current model are given as
follows:

o States. The state of node ¢ in slot ¢ is denoted by
8t = (dyi,Dy;), where dy;,Dy; € Z*. Then, the
network-wide state in slot ¢ is denoted by s; = (d;, D;),
where d; £ [d1,d2,...,din] € D £ (Z*)N and
D, & [Di1, Dy 2, ..., D n] € D, respectively. In addi-
tion, we denote the spaces of s;; and s; by S; £
{s¢i|Dt; > di;} and S £ Isy|D; > d;}, respectively.

o Actions. The network-wide action in slot ¢ is denoted by
a; £ [az1,a12,...,a; n]. Recall that AP schedules at
most one node in each slot, hence we have |a:| < 1.
Denote by A the space of all actions, we have a; € A.

o Observations. We denote the network-wide observation of
the state of the nodes by 0; = [0;.1,0¢.2,...,01n] € O,
where O is the space of all observations. Specifically,
01 = <Dt,i,czm> is the observation of node 7 in slot ¢,
consisting of the full-observed destination Aol, Dy ;,
and the partial-observed local age d“ We have cfm- €
Z* | J{X}, where X denotes no observation of the local
age of node ¢ when the node is not scheduled or the
node is scheduled but the transmission fails. With these
new notations, o; can be denoted by <Dt,&t>, where
dt = [dt,la ey dt,N]-

o Transition Function. We define the transition probability
of network-wide states as Pr (s;41|s¢, at), which denotes
the conditional probability of state s;;; given state s;
and action a;. We note that the transitions of D; and
d, are conditionally independent of each other and the
transition of the local age d; is independent of the action
a;. We then have

Pr (St+1 ‘St, at) = PI' (Dt+1 |St7 at) P]f' (dt+1 |dt) s (5)

where

N
Pr(Dyy1ls,a0) = [[ Pr(Degailsiirans),  (6)

i=1
and
N

Pr (dt+1|dt) = HPI‘ (dt+1,i|dt,i) . (7)
i=1
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We can further express each term on the right-hand side
of (6) as

Pr(Dii1,i]8¢t,i,at,)

Di, ifa;; =1,and Dyjq; =dy; + 1,
- 1— Pi, if Q¢ 5 = 1,and Dt-i—l,i = Dt,i + 1,
1, if at 5 = O, and Dt—i—l,i = Dt,i + 1,
0, otherwise.
3)
Similarly, for each term on the right-hand side of (7),
we have
Ais if diy1, =1,
Pr (dt+1,i|dt,i) = 1— X, if dt+1,i = dtﬂ' +1,
0, otherwise.

€))

o Observation Function. Denote by Pr(o:|s:,a:) the
network-wide observation function, which is defined as
the probability of observation o; conditioned on state s;
and action a;. Note that D is fully observable at the AP
and the evolution of cim with different ¢ are independent
from each other. We thus have

N
Pr(0t|3tvat):Pr(dt‘dtvat):HPr(dt,i|dt,iaat,i)a
i=1
(10)
where we term
pis if dy;=d; and a;;=1,
; 1—p;, ifdy;=X and a;;=1,
Pr (dti|dtiaati): b 1 R ane o,
’ ’ ’ 1, lfdtJ'ZX and at,i:O,
0, otherwise.
(11)

as the local age observation function of node .

o Immediate Reward. We target to optimize the long-term
EWSAOoI. Based on that, We define the immediate reward
of state s; as r (sy) = Zf\il w;Dy ;.

We remark that due to the partially observed network-wide
state s;, the formulated POMDP problem cannot be solved
by directly applying the existing Aol-oriented scheduling
frameworks designed for the scenarios with full observation of
network-wide states (e.g., [22], [26], [28]). To circumvent the
problem, we will leverage the sufficient posterior probability
distribution of s; with the observation o, at the AP. Such
probability distributions are also named as the belief states
of the POMDP [35]. In the following, we will reformulate
our POMDP as a belief-MDP, where the belief states of the
POMDP are regarded as the states of the belief-MDP.

III. BELIEF-MDP FORMULATION AND SIMPLIFICATION

In this section, we first reformulate the POMDP intro-
duced in Section II as a belief-MDP and then simplify the
belief-MDP to gain more insights.

4109

A. Reformulation of the POMDP

With reference to [39], a POMDP can be converted to an
equivalent belief-MDP based on the belief states of the system.
To that end, we now introduce the definitions of the belief
states and other components of the belief-MDP version of our
POMDP problem as follows:

o Belief States. The belief state of node ¢ is defined as the
current probability distribution over S; on condition of
the history so far. Mathematically, the belief state of node
¢ in slot ¢ is denoted by

By, = [Bt,i(st,i)]

) 5¢i€S;

(12)

with || By ;|l1=1, where By ;(s.;) £Ppr (8t,i|he,;) denotes
the probability assigned to state s;; with the current
history hy ; £ (B1,i,01,i,01,i,02,, .-, 0t—1,i,04—1,;)
of node ¢. As mentioned in Section II-B, D, is
deterministic for a given history profile h;; since h;;
includes o;_1 ;. Therefore, By ; can also be represented
by (Dy;, b.,;), where by ; £ [bm(dt,i)}df .cz+ denotes the
belief state of the local age of node 4, and ||b;;||; = 1.
Furthermore, by ; (d; ;) = Pr (d; ;|hy.;) denotes the prob-
ability assigned to d,;. Hence, we have B, (s;;) =
be,; (dti) given Dy ;.

The network-wide belief state is defined as the current
probability distribution over S on condition of h; £
(B1,a1,01,0Q2,...,a;—1,0:_1), and it is also the state
of the belief-MDP. We denote the network-wide belief
state in slot ¢ by

B, £ [Bt(St)] <Dtabt>7

where b; 2 [b;(d)] a,cp 18 the belief state of all local
ages in slot t with b; (d;) = Pr(d:|h;) denoting the
probability? assigned to d;, and with B;(s;) £ Pr (s;|h;)
denoting the probability assigned to s;. Thus, we have
IB:ll1 =|lbe|l1 = 1. With a given Dy, the belief state
of the local age of each node evolves independently in
our POMDP framework, and thus we have B (s;) =
b (dy) = Hfil by, (dy,;). Besides, we denote B as the
belief space, i.e., the collection of all possible B;. B is
also called belief simplex [40].

e Belief Update. The AP can update By, from By at the
end of slot ¢ after receiving new observations once the last
action a; is executed. Recall that B; = (D, b;), both D,
and b; need to be updated. Specifically, the destination
Aol of node 7, i.e., the i-th component of D;, can be
updated by

Dy = Dpi+1, ifd; =X,
t+16 sz +1, otherwise.

se8 = 13)

(14)

The update of D; ; is deterministic and independent from
node to node. Moreover, b;;; can be updated from b,
through the Bayes’ theorem as

bt+1(dt+1) =p Z by (dt)PT (dt+1|dt)PT (Eltldta at) ,
d.€D

15)

3We omitted h; ; in the definition of the belief state for concise notation.
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where

p = 1/ Z bt (dt) PI’ (dt+1|dt) PI' (&t|dt,at)
dit1,di €D

(16)

is the Bayes normalizing factor. Considering the indepen-
dent evolutions of d ;’s across nodes, we can also update
b, via updating b; ; of each node ¢ individually. We omit
the update equation of b, ; here for brevity.

e Actions. The action of the belief-MDP in slot ¢ is denoted
by a; € A, which is exactly same as that of the POMDP.

e Transition Function. The transition function of the
belief-MDP is given by

PI‘ (Bt+1 |Bt, at)

= Z Pr (Bt+1‘Bt7at70t) Pr (Ot|Bt7at)a
0,€O
(17)

where

Pr(o|Bi,a;) = Y Bi(s)) Pr(oysi,ar),  (18)
s:€S

and
Pr (Bt+1|Bta ag, Ot)
1, if the belief update with arguments
= By, a;, 0, returns By,
0, otherwise.

19)

e Policy. We adopt a deterministic stationary scheduling
policy 7 for the belief-MDP. The policy maps the belief
space B to the action space in each slot.

e Reward. Since the destination Aol is deterministic for
the AP, the immediate expected reward on condition of
belief state B; is the same as that in the POMDP, i.e.,
R(B;) 2 E[r(s;)|By] = Zfil w;Dy ;. On this basis,
the objective problem can be rewritten as

ZR B))|Bi, ]

s.t, Jlar <1, Vt,

min hm —IE
s

(20)

where B; is a predefined initial belief state. Recall that
we assume do; = Do; = 1,Vi, before running the
network, and thus B ; = (2,[A\;, 1 — A;,0,---]), Vi.
We remark that the belief update is computationally com-
plicated when the dimension of the belief states is high, and
is impractical when the dimension goes to infinity. Moreover,
the continuousness of the belief space B leads to a PSPACE
hardness of optimizing the EWSAoI of the belief-MDP opti-
mally [35]. We have explored the dynamic programming (DP)
approach to optimally solve the formulated POMDP with finite
horizons in the conference version of this work [29]. Our
findings in [29] showed that the optimal policy can only be
used for a system with a very small number of users due
to the high computational complexity. This motivates us to
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further simplify the belief-MDP by exploring its structures. For
brevity, we omit the details of the method proposed in [29].

B. Belief-MDP Simplification

We subsequently show the existence of a simplified rep-
resentation of the belief-MDP with the given B;. To start,
we have the following definition:

Definition 1: Assume AP schedules node  in slot t with
observation d;; = k;, and then does not receive any packet
from node i in the following m; slots. Define the local age
belief state of node i in slot t +m; by c(k;,m;), namely, the
belief of node i with the last observation k; followed by m;
elapsed slots.

For convenience, we ignore index ¢ for nodes and introduce
the following proposition.

Proposition 1: The distribution vector of the local age
belief state c(k,m) of node i in slot t can be given by

c(k,m) = [exm (di)]g, ez

= [)‘a)"%)\’);v"' m—170

707,ym707_._}7
2

Ay

where k,m € 7%, v = 1 — X\ and cm (di) denotes the
probability assigned to d;. The position of entry ¥™ is k+m,
and this denotes that the corresponding destination Aol of
entry ¥ is k + m.

Proof: See Appendix A of [41]. (|

We remark that Proposition 1 shares the same spirit
as the characterization of the local age belief states given
in [38, Proposition 4]. However, reference [38] considered
the evolution of the local ages of one stream. In contrast,
we consider the evolutions of the destination Aol and the local
ages of multiple streams in our system. The strategy in [38]
cannot coordinate the Aol of different streams in our model,
and thus it cannot be used to solve the formulated POMDP.
Moreover, a truncation was applied to the local ages in [38]
but is not used in this paper. On the other hand, our idea of the
belief state simplification is similar to that in [42]. However,
the detailed expressions of the simplified belief states are not
provided in [42], and assumptions on the state transition made
in [42] do not hold in our case. As such, the method in [42]
can also not be applied to solve our POMDP.

Define a group of belief states that have the Aol equal to
k + m together with ¢(k,m) defined in Proposition 1 as
C(k,m) £ (k+m,c(k,m)) for m,k € Z*. Denote by C
the collection of all possible C(k, m). Then, we have the
following corollary.

Corollary 1: Suppose the network has a certain belief state,
i.e., bg; = ey, Dy, =1,V before running, then B, ; € C for
t=1,2,---,T,Vi.

Proof: We use induction to prove it. First, it is clear that
b1, = ¢(1,1),D;,; = 2, and hence B;,; € C. In slot t,
suppose By ; = (ki; + my;,c(kis,me;)) € C,Vi, where
k. and m; ; denote the last observation of local age and the
number of slots elapsed since the last observation of node @
in slot ¢, respectively. Now, we consider following cases:

e The AP schedules node 4, and the transmission of node

¢ succeeds. In this case, the AP observes the local age
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of node 7. By (21), only entries 1,2,--- ,m;; and k; ; +
my,; in by ; are greater than 0, and hence we have all
possible observations of the local age given by I%m- €
{1,2,--+ ,my;} U{ki; + my;}. And by (14), we have
Diy1, = l;:t,i + 1. Hence, we have By11; = [ift,i + 1,
c(keq,1)] € C.

e The AP schedules node ¢, and the transmission of node
7 fails. In this context, the AP cannot observe the local
age of node 7 in slot ¢, and hence the elapsed time of
no observation will become m; ; 4+ 1 in slot ¢ + 1, and
Dyt =Dy +1 =k ; +my; + 1. Hence, we have
Bt+1’7; = [kt,i +my; + 1, C(kt’i, My + 1)} ecC.

o For any node that is not scheduled, its belief state will
be still in class C in the next time slot. This is because
the transition of this node is same as that of a scheduled
node whose transmission fails.

The above three cases cover all possible results in slot ¢ + 1.
Hence, we have B,y ; € C,Vi. This completes the proof.
O
Based on Corollary 1, each infinite dimensional belief state
B;; € C can be sufficiently represented by two positive
integers k;; and my;, with D;; = k;; + my; and b, ; =
c(k¢ i, my ;). Hence, the belief-MDP framework in Section III
can be characterized in a much simpler form. We name this
simplified representation of belief MDP as Last-Observation-
Characterized (LOC) belief-MDP. The actions of the LOC
belief-MDP are the same as that of the original belief-MDP.
The other components of the LOC belief-MDP are presented
as follows.

e States. The state of node 7 in slot ¢ is denoted by 2z ; £
[kt,i,me i), where k¢ ;,my; € ZT are defined in Corol-
lary 1. Then, the network-wide state in slot ¢ is denoted
by z¢ = [ki, my), where ky = [ki1,kio,..., k] € D
and my; = [my1,My,...,myn] € D. Define Z £
D x D as the space set of z;. Z also corresponds to the
feasible part of the belief space B for belief states with
the initialization in Corollary 1.

o Transition Function. We define the transition function
of the LOC belief-MDP as Pr(z;y1|z:,a:), which is
given by

N
Pr(zi41|z¢,a¢) = HPT (Ze41,]2e0ae),  (22)

=1
where
Pr(ziy1,i|ze6, a1 = 1)
pi)\i(l — )\i)d_l, if k:tJr])i =d and Mi41,4 = 1,

pi(l — )\i)m"’i, if kt—i—l,i = kt,i + My and

_ M1, = 1,
1 —p;, if k441, = k¢ and
Myy1,; = My; + 1,
0, otherwise,
(23)
with d € {1,2,---,my,}. Furthermore, Pr (Zt+1,¢|

2t Qti = 0) =1if k1,5 = ke and myqq5 = my i+ 1.

4111

br,u(l)

Fig. 2. The sub-region of B and its reduced feasible space, i.e.,
points [0.4,0.6,0, - --1,[0.4,0,0.6,0,- - -], and [0.4,0.24,0.36, 0, - - - ] in the
three-dimensional space with N = 1 and A\ = 0.4.

e Reward. The expected immediate reward given a state z
is rewritten as
R(z¢) 2 Y% wilkei +mus).

e Policy. The policy for the LOC belief-MDP framework is
the same as that in Section III with a different domain Z.
It can be equivalently denoted by 7 : Z — A.

In typical work on solving a belief-MDP, one need to use the
Backup operation [40], [43] to repeatedly find more feasible
belief states and update the feasible belief space horizon by
horizon. It is computationally complicated, and unlikely to
reach most of feasible belief states in the belief simplex.
However, with the above simplification, we reduce the space of
belief states sharply from the continuous space B to a discrete
space Z. That enables us to directly obtain the full feasible
space of the belief states without using the inefficient Backup
operation. Furthermore, the completed transition probabilities
of belief states can be obtained by (22). Fig.2 illustrates one
example of the space reduction, where we have one node with
its status update arrival rate A = 0.4. The gray triangle plane is
the sub-region of B in the three-dimensional space, on which
each point is associated with a possible local age belief state.
After the simplification, the sub-region of the belief space B
can be reduced to three feasible belief states, i.e., the three
points plotted on the sub-region.

Remark 1: We can extend the above LOC belief-MDP sim-
plification process to the scenario with Markovian arrival
processes. Specifically, the belief states of a node can still be
characterized by two-dimensional vectors. More details can
be found in Appendix D of [41].

IV. POMW PoLICY

Based on the LOC belief-MDP, we can use the conventional
DP approach to solve the Aol scheduling problem. However,
the LOC belief-MDP is formulated for a multiuser model, thus
the DP would suffer from the curse of the dimensionality as
the number of end devices increases. To circumvent such a
problem, we propose a low-complexity policy for the EWSAoI
optimization in the considered network with partial observa-
tions, named POMW policy.
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We remark that a downlink network with the same status
update traffic model as ours was investigated in [28]. Different
from our network, the local age of the status update packets
are fully observable at the AP due to the downlink setting. The
authors devised an Age-based Max-Weight policy by leverag-
ing the Lyapunov Optimization [34]. This policy minimizes a
defined Lyapunov drift on condition of the fully observable
local age and destination Aol in each slot. Hereafter, we call
it Fully Observable Max-Weight (FOMW) policy. Moreover,
for brevity, we use “FON” to represent the network with the
fully observable states in [28] and “PON” to represent our
considered network with partial observations in the rest of
this paper.

Inspired by [28], we apply the Lyapunov Optimization to
devise a low-complexity policy, i.e., the POMW policy, which
extends the FOMW policy developed in [28]. To that end,
we will define a Lyapunov Function based on the EWSAoI
of the network. The POMW policy attempts to minimize the
expected drift of the Lyapunov Function under condition of
the current belief state and destination Aol in each slot .
Therefore, the EWSAoI of the network can be optimized with
lower computational complexity.

We define the linear Lyapunov Function as

N
L(t) = N 2ﬁiDt,i7

where (; > 0 is an hyper-parameter that can be used to tune
the POMW policy to different network configurations. The
Lyapunov Drift is defined as

(24)

A[By] =E[L(t+1) — L(t)|By].

The Lyapunov Drift A [B;] refers to the expected increase of
the Lyapunov Function L(t) in one slot. Hence, by minimizing
the drift in (25), the POMW policy equivalently reduces L(t).
Consequently, the EWSAoI of the network is kept low.

To develop the POMW policy for the Lyapunov Drift
minimization, we analyze the expression for the drift in (25).
Recall the definition of B, we realize that the value of L(t)
is fixed with a given B;. Thus minimizing the Lyapunov Drift
in (25) is equivalent to minimizing E[L(¢ + 1)|B]. Recall the
evolution of D, ; given in (2), and we have

(25)

E[L(t +1)|Bi]

N Ly
= Z N BiDiy1 Bt]
]_V Bi
:ZNl iaci > bei(d)(d+1)+(1—piar)(Dyi+1)
=1 dezt
N N
=N l Z aiiBipiGe,i + Zﬁi(Dt,i +1) (26)
=1 =1
where
=) bi(d)d 27)

deZ+

Eq. (26) leads to following proposition:
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Proposition 2: To minimize the Lyapunov Drift in slot t,
the POMW policy should schedule node i with the maximal
BipiGi.s
The proof of Proposition 2 is straightforward and hence is
omitted. Before the POMW policy making the scheduling
decision, the belief probabilities b, ;(d) need to be updated
based on the observations of the previous slot.

Remark 2: Note that when local age is fully observed,

we have
> build
dez+

)d = dy ;,Vt,i. 28)

In this case, the POMW policy will schedule node i with
the maximal B;p; (Dy; —dy;) in each slot, which exactly
coincides with the criterion of the FOMW policy presented
in [28]. This observation indicates that the POMW policy is
a generalization of the FOMW policy.

However, it is hard to implement this online policy on the
fly due to the high computational complexity. In each slot,
the POMW policy selects an action a; by minimizing (26).
This step requires O (N|AJ||ZT|) operations. Subsequently,
the policy updates the local age belief states for the next slot by
the Bayes’ theorem. Such an update step requires O (N |Z+ \2)
operations. Those two steps are computationally intractable
since Z7 is an infinite set*. Thus, the straightforward applica-
tion of the FOMW policy to our problem could be impractical.

Thanks to the LOC belief-MDP framework proposed in
Proposition 1, we are able to simplify the expression of G ;
from complex expectation calculation to a closed-form expres-
sion of only three parameters. More specifically, it can be
expressed as

Gt = ki +me; —c(kes,me)n
m 1
R (RO | CYE P

where n = [1,2,3, - -]T. By now, we can formally describe
the POMW policy in Algorithm 1. The POMW policy
can minimize the Lyapunov Drift with low computational
complexity, and consequently optimize the EWSAoI of the
network.

Note that in Algorithm 1, the updates of k;; and m, ; are
based on the transition function of the LOC belief-MDP given
in (23).

Thanks to the proposed simplification, the complexity of
the step to select an action is reduced from O (N|AJ||ZY]) to
O (N|.A|). The complexity of updating states is reduced from
O (N|Z*]*) to O (2N). Moreover, we do not need to set a
truncation on destination Aol or local age when implementing
Algorithm 1.

V. PERFORMANCE ANALYSES

In this section, we first introduce a low-complexity policy
named Randomized Scheduling (RS) policy and analyze its

4One can truncate the maximum value of Aol to make the computation
feasible. However, a sufficiently large cap of the Aol should be applied to
ensure the accuracy of the truncation, which still leads to unacceptably high
computational complexity.
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Algorithm 1 POMW Policy
Initialization: ¢t = 1,m;; = 1,k ; = 1,V4;
while each new slot ¢t do

for each node i do

Gt,i =Mmy,; + [1 — (1 — )\7)m”} (kt,z‘ - %)a
end
Schedule node j in the current slot, where
Jj = arg m?X BipiGl i

Obtain the local age observation dAtJ- of node j;
if d; ; = X then
| M1y =me + 1
else if d; j =d € Z" then
| i1y =1k, =d;
end
Myt1,0 = My + 1,V # 75
t=t+1;

end

EWSAoI performance. Based on its performance, we derive
the upper bounds for the EWSAoI performance of the POMW
policy. We also analyze the performance guarantee of the
POMW policy by comparing its EWSAoI performance with a
universal lower bound in the literature.

A. RS Policy

In [28], an RS policy was proposed to optimize the Aol
of the network. In the RS policy, node ¢ is scheduled with
probability p; € (0,1] in each slot. The scheduling probabil-
ities are time-invariant and satisfy Zf\il 1; < 1. Notice that
the actions of the RS policy is independent of the network
states, thus this policy can also be adopted in the considered
PON. With reference to the proof of [28, Prop. 4], we give
the EWSAol performance of the RS policy, denoted by R,
in Proposition 3.

Proposition 3: The EWSAol of the network under the RS
policy with scheduling probabilities {,ui}ijil is

N
rg 1 1 1
A N;wl (Ai +Piui> .
Note that the EWSAoI in (30) is slightly different from
that in [28] due to the difference in the local age evolution
of two systems. Denote by {uj}ﬁil the optimal scheduling
probabilities of all node, the optimal RS policy is given as
follows [28, Th. 5].
Theorem 1: Consider the network under the RS policy. The
optimal scheduling probabilities are

= vV wz‘/pi
L Zj\; Vw;/pj

5To ease understanding and simplify expressions, we set such an initial-
ization. Without loss of generality, we can also select any b; € B for the
initialization. In that case, when my ; and k;; do not exist for some 17,t,
we can update belief states by (15) and calculate G ; by (27).

(30)

€29

4113

and correspondingly,

1 w w ’
RRS* i Z [ Wi >
= — -~ I . 3
N i—1 )\i <i1 i> ( )

According to [28, Th.10], R'S* is the upper bound of
the EWSAol performance of the FOMW policy, denoted
by RFOMW  The FOMW policy can be regarded as the
full-observed counterpart of the POMW policy. Nevertheless,
the analytical method in [28] cannot be directly applied to
derive upper bounds for the POMW policy as it will not lead
to any insightful results. The rationale is that the analysis of
the POMW Dpolicy is more challenging due to the complicated
transitions between the belief states in the continuous space.
Thanks to the proposed LOC simplification, we manage to
derive two upper bounds for the POMW policy given in the
subsequent subsections.

B. Upper Bounds of the POMW Policy

Built upon the proposed LOC belief-MDP, we now derive
two upper bounds for the POMW policy. One of them is the
EWSAOoI performance of a particular RS policy, as stated in
the following theorem:

Theorem 2: The EWSAol performance of the POMW policy
with 3; = w;/\ipip;, Vi, denoted by RFOMW s  upper
bounded by

N
1 1
RPOMW < § ; 1) < RRS]W7 33

TN~ “ Aifipi )= &3

where

= Vwi/\ipi Vi
sy V@i /A

are a series of scheduling probabilities of all nodes in the
network. RESM is the EWSAol of an RS policy with the
corresponding scheduling probabilities

MM _ VWwili/pi Vi
D SARRV/mYPVIT

Proof: We prove it by leveraging the introduced RS

policy. See Appendix B of [41] for details. ]

Note that the value assigned to 3;, which depends on ug, can

be attained by minimizing the upper bound of the EWSAoI,

given by & SN w; (1/(Aiggipi) + 1). A similar method was
used in [34].

(34)

(35)

C. Performance Guarantee of the POMW Policy

Based on Theorem 2, we can analyze the performance guar-
antee of the POMW policy theoretically. Firstly, we introduce
a universal lower bound given in [28, Th.3]. This lower bound
applies to any feasible scheduling policy, and is applicable
to both FONs and PONs. The universal lower bound of the
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TABLE I
c(k,m): SIMULATION RESULTS VERSUS THEORETICAL RESULTS WITH A = 0.6

H Belief states of the local age ‘ ceom(1)  cem(2)  ckm(3)  crm(@)  ck,m(5) H
c(1,4) (simulation) 0.60322 0.2384 0.0958 0.037 0.02558
c(1,4) (theoretical) 0.6 0.24 0.096 0.0384 0.0256
¢(2,3) (simulation) 0.59744  0.24156  0.09602 0 0.06498
¢(2, 3) (theoretical) 0.6 0.24 0.096 0 0.064
¢(3,2) (simulation) 0.59832  0.24116 0 0 0.16052
¢(3,2) (theoretical) 0.6 0.24 0 0 0.16
c(4, 1) (simulation) 0.59756 0 0 0 0.40244
c(4,1) (theoretical) 0.6 0 0 0 0.4
EWSAol performance of any policies is given by A. Evolution of Belief States
N We simulate the evolution of the local ages of a node
Lp = min izw (1+3> (36) with the packet arrival rate A = 0.6 and (k,m) €
{a:}l, 2N = “\a 7 {(1,4),(2,3),(3,2), (4,1)} for 50000 runs, and then calculate
N the distributions of the final values of the local ages on
s.t., ZQi/pi <1, 37) 1,2,3,4,5 by (21). Let cgn(d) denote the dth entry in
=1 c(k, m). Note that in those cases, the values of the local ages
¢ < A, Vi. (38) cannot evolve to a value over 5, and hence Ckm(d) = 0,

The solution ¢ of the above problem can be obtained follow-
ing [28, Algorithm 1], and the lower bound is

1 1
Lp= ﬁ;w <q*+3). (39)

%

Based on the lower bound (39), we can have the following
corollary on the performance guarantee of the POMW policy.

Corollary 2: The performance of the POMW policy with
Bi = wi/ g} follows that

RPOMW 9
; (40)
LB )\mzn
where Apmin = min {/\i}ﬁvzl.
Proof: See Appendix C of [41]. ]

Remark 3: We use the ratio between REOMW gnd L to
evaluate the performance guarantee of the POMW policy.
Corollary 2 indicates that the ratio is inversely proportional
to the packet arrival rates of nodes \; in the network. When
the network is close to the “generate-at-will”, i.e., \; — 1,V
the ratio of RPOMW und L with Bi = wi/Niq} is smaller
than 2. This coincides with the performance guarantee of a
counterpart FOMW policy devised for the “generate-at-will”
system in [13].

VI. NUMERICAL RESULTS

In this section, we first provide some numerical results on
belief states defined in our POMDP formulation. We then
compare the proposed POMW policy with its fully observable
counterparts. Next, we verify the theoretical analyses on the
POMW policy. Finally, we compare the performance of the
POMW policy with that of three baseline policies in PONSs.
All parameter settings are referenced from [26], [27], [28],
and [30].

Vd > 5. Therefore, we only show the probabilities of values
not exceeding 5 for space saving. Table I compares the
simulation and theoretical results of these 5 belief states of the
local age of a node. The belief states, denoted by c(k, m), are
defined in Proposition 1, i.e., the distribution of the local age
of a node with a last observation of the local age k followed
by m elapsed slots. According to Table I, the positions of
non-zero entries in each belief state of the simulation are
the same as that in (21). The simulation results match the
theoretical results well, which validates the proposed LOC
simplification.

B. Comparisons With Fully Observable Counterparts

The EWSAol performances of the POMW and FOMW
policies are obtained via 2000 Monte-Carlo simulation runs.
B; s set as w;/A;u;p; for both of the two policy. The Aol
performance of the RS policies, the universal lower bound L3,
and the upper bound of RFOMW are computed using (30),
(36), and (33), respectively.

In Fig. 3, we illustrate the EWSAoI of the POMW policy,
its corresponding upper bounds, and the universal lower bound
Lp with increasing packet arrival rate. The RFOMW in the
FON and its corresponding upper bound, i.e., the optimal RS
policy, are given as benchmarks. We set N = 5, w; = 1,
pi = 0.8, \; = A\, Vi, and T' = 400. Fig. 3 shows that all
curves decrease as A increases. This is intuitive because the
EWSAoI decreases when the status update packets arrive at
nodes more frequently. Furthermore, the value of the universal
lower bound is the smallest, the value of R*5M is the largest,
and RPOMW and RFOMW are lower than their corresponding
upper bounds, respectively. These relationships validate the
analysis given in the previous section. Fig. 3 also shows that
RPOMW iq larger than RFOMW  and the upper bound of
RPOMW g larger than that of RFOMW  This is intuitive
because the POMW policy in the PON only knows the
packet arrival rate and some occasional observations, while
the FOMW policy in the FON can utilize the fully observed

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 21,2024 at 03:00:46 UTC from IEEE Xplore. Restrictions apply.



LIU et al.: OPTIMIZING Aol IN WIRELESS UPLINK NETWORKS WITH PARTIAL OBSERVATIONS
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\-\ —B- Upper bound of RFOMW, ie., RRS*
30 \ —¥— RPOMW ]
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\ .
25 o} Universal lower bound 8
—
)
<
%2}
=
m

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Packet arrival rate, A

Fig. 3. EWSAOoI performance versus an increasing packet arrival rate, where
N =5,p; =0.8, and w; = 1.

—%— RPOMW
—B-gFOMW

A=0.1,2,=0.9

EWSAol
~

A,=0.5, A,=0.5

3 | | | |
0.2 0.3 0.4 0.5 0.6 0.7 0.8

Transmission successful rate, p

Fig. 4. RPOMW and RFOMW versus transmission successful rate
with different combinations of A; in PON and FON, where N = 2, and
w] =wo = 1.

state information. Furthermore, the gap between the RFOMW
and its upper bound decreases slowly as A increases, while the
gap between the R”OMW and its upper bound decreases much
quickly. This phenomenon can be explained by refering to the
expressions of the upper bounds, given by (30) and (33). It is
obvious that 1/); in (33) always has larger coefficient than
that of (30). Hence, the upper bound of RPOMW increases
faster than that of RFOMW with the decrease of A. Moreover,
the EWSAoI performances of the POMW and FOMW polices
and their corresponding upper bounds converge to the same
value when A\ = 1. This is because both the PON and FON
approach to the “generate-at-will” model when A tends to 1.

In Fig. 4, we compare RFOMW and RPOMW versus
transmission successful rate p for N = 2 with three pairs
of packet arrival rates {A;,A2}. We set p1 = ps = p,
w1 = wy = 1, and three pairs of packet arrival rates
)\1 = )\2 = 0.5; /\1 = 0.25, /\2 = 075, and /\1 = 0.1,
X2 = 0.9. Fig. 4 shows that the gap between RFOMW
and RPOMW becomes larger when the gap between two ;s
increase. This can be explained by combining Corollary 2 and
[28, Th.5]. Corollary 2 indicates that the performance
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Fig. 6. EWSAol performance as the number of nodes increases, where

>\i = 0.5, pPi = 0.8, and Wi = 1.

guarantee of RPOMW is inversely proportional to iy, and
[28, Th.5] indicates that the performance guarantee of the
fully observed counterpart is a constant. A larger arrival rate
gap results in a smaller \,,;,, and consequently a larger gap
between the RPOMW and RFOMW  Fig. 4 also shows that
RPOMW and RFOMW (decreases in all cases when the packet
transmission rate p increases. This is because the destination
Aol Dy ; drops to the local age d;; + 1 more frequently with
larger p.

In Fig. 5, we depict the EWSAoI of the POMW and FOMW
policies with increased number of nodes, and compare them
with corresponding upper bounds. We also include R*5M and
the universal lower bound as benchmarks. We set A; = 0.1 and
p; = 0.8 for all nodes, and increase the number of nodes
from 10 to 30. It is shown in Fig. 5 that all curves increase
as number of nodes increases. This is because each node has
fewer chances to be scheduled when the number of nodes
increases, thus its Aol has fewer chances to decrease. Fig. 6
plots the same set of curves as in Fig. 5, where the values
of A\; and Ay are both set to be 0.5. Fig. 6 shows similar
phenomenon observed in Fig. 5. Furthermore, the performance
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Fig. 7. EWSAol performance versus packet arrival rate A in the PON with

N = 10. Note that the notation U/ (a, b) denotes a uniform distribution over
the real number interval [a, b].

of all schemes improves from Fig. 5 to Fig. 6, which is
expected since the packet arrival rates are increased.

C. Comparison With Baseline Policies

In the following, we show the advantages of the proposed
POMW policy in PONs over two baseline policies. The
baseline policies are described as follows:

1) Round Robin (RR) policy: In the RR policy, nodes are
scheduled by the AP in a circular order to ensure a fair
scheduling opportunity among the nodes.

2) Max weighted Aol (MWA) policy: The MWA pol-
icy does not need the knowledge of nodes’ local age.
Specifically, the AP always schedules the node j with
J=arg max wipi Dy ;.

In the following figures, the EWSAol performance of all
policies are obtained via 10000 Monte-Carlo simulation runs.

Fig. 7a shows the EWSAol performance of the POMW
policy, the MWA policy, and the RR policy in a symmetric
PON. The weight coefficients w; and transmission successful
rates p; of all nodes are the same. We can observe from
Fig. 7a that the RR policy has the worst performance. This is
intuitive because the RR policy does not use the observations
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Fig. 8. EWSAOoI performance versus packet arrival rate A, where N = 10,
and w; = 1,Vi.

of the network states, while the MWA and POMW policies
make decisions depending on the observations. Moreover, the
POMW policy is superior to the MWA policy when A is small,
but the EWSAoI performances of these two policies tend to
coincide when A > 0.25. This is owing to the fact that the
MWA policy only leverages the observations of the destination
Aol, while the POMW policy uses the observations of both
the destination Aol and local age. Furthermore, in a symmetric
PON, the expected local ages of all nodes tend to be symmetric
as A grows. In this case, the POMW policy and the MWA
policy becomes equivalent.

Fig. 7b plots the long-term EWSAoI curves of all three
policies as in Fig. 7a over asymmetric PONs. The transmission
successful rates and weight coefficients of all nodes are
randomly drawn from uniform distributions in each simulation
run. We can see that in this case, the performance of POMW
policy clearly outperforms that of the RR and MWA policies.
Furthermore, the performance of the MWA policy cannot
approach to that of the POMW policy even when the arrival
rate increases to 0.3. This is because the expected local ages
are not symmetric in an asymmetric PON and the MWA policy
does not consider this information.

Next, we compare the performance of the propose POMW
policy with that of a decentralized policy in the considered
network. To our best knowledge, the Index-Prioritized Ran-
dom Access (IPRA) policy proposed in [27] is the only
decentralized scheme that can be applied in the considered
system. In the IPRA policy, an index is first calculated for
each end node in each slot based on the current local age
and Aol of the node, and the end node will transmit only if
its index is above a predefined threshold. Fig. 8 shows the
EWSAOoI performance of the POMW policy and the IPRA
policy. We set N = 10, \; = A\, w; = 1,V4, and three sets
of transmission successful rate with p; being 0.5, 0.7 and
0.9 for all ¢, respectively. We can observe from Fig. 8 that
the proposed POMW policy is superior to the decentralized
IPRA policy in all settings. This is because the decentralized
scheme suffers from unavoidable transmission collisions in the
uplink.
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VII. CONCLUSION

In this paper, we investigated the Aol-oriented scheduling
problem for a wireless multiuser uplink network. Due to the
partial observations of the local ages at end devices, we for-
mulated the scheduling decision-making problem as a partially
observable Markov decision process (POMDP). The POMDP
was first reformulated to an equivalent belief-MDP, and then
simplified to an Last-Observation-Characterized (LOC) belief-
MDP by adequately leveraging the properties of the status
update arrival processes. With the simplification, the infi-
nite dimensional belief states can be characterized by two-
dimensional vectors, and thus the complexity of belief updates
is significantly reduced. On this basis, we devised the Partially
Observable Max-Weight (POMW) policy that minimizes the
expected weighted sum Aol of the next slot on condition of the
current belief state. Based on the LOC belief-MDP, we derived
upper bounds for the performance of the proposed POMW
policy. Moreover, we evaluated the performance guarantee
of the POMW policy by comparing its performance with
a universal lower bound available in the literature. Finally,
simulation results validated our analyses, illustrating that the
performance gap between the proposed POMW policy and its
fully observable counterpart is proportional to the inverse of
the lowest arrival rate. The simulation results also validated the
superiority of the POMW policy over the baseline policies.

Future work includes the development of a Whittle’s index-
based policy for the considered scheduling problem, the exten-
sion to the scenarios where the packet arrival rates at end nodes
are not known a priori, as well as the extension to more recent
information freshness metrics (e.g., Aol at Query [44]).
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